Stress Detection Using Wearable Physiological and Sociometric Sensors
نویسندگان
چکیده
منابع مشابه
Stress Detection Using Wearable Physiological and Sociometric Sensors
Stress remains a significant social problem for individuals in modern societies. This paper presents a machine learning approach for the automatic detection of stress of people in a social situation by combining two sensor systems that capture physiological and social responses. We compare the performance using different classifiers including support vector machine, AdaBoost, and [Formula: see ...
متن کاملStress Detection Using Wearable Physiological Sensors
As the population increases in the world, the ratio of health carers is rapidly decreasing. Therefore, there is an urgent need to create new technologies to monitor the physical and mental health of people during their daily life. In particular, negative mental states like depression and anxiety are big problems in modern societies, usually due to stressful situations during everyday activities...
متن کاملActivity-Aware Mental Stress Detection Using Physiological Sensors
Continuous stress monitoring may help users better understand their stress patterns and provide physicians with more reliable data for interventions. Previously, studies on mental stress detection were limited to a laboratory environment where participants generally rested in a sedentary position. However, it is impractical to exclude the effects of physical activity while developing a pervasiv...
متن کاملActivity-Aware Physiological Response Prediction Using Wearable Sensors
Prediction of physiological responses can have a number of applications in the health and medical fields. However, this can be a challenging task due to interdependencies between these responses, physical activities, environmental factors and the individual’s mental state. In this work, we focus on forecasting physiological responses in dynamic scenarios where individuals are performing exercis...
متن کاملAutomated detection of gait initiation and termination using wearable sensors.
This paper presents algorithms for detection of gait initiation and termination using wearable inertial measurement units and pressure-sensitive insoles. Body joint angles, joint angular velocities, ground reaction force and center of plantar pressure of each foot are obtained from these sensors and input into supervised machine learning algorithms. The proposed initiation detection method reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Neural Systems
سال: 2016
ISSN: 0129-0657,1793-6462
DOI: 10.1142/s0129065716500416